Biomechanical Evaluation of the Effects of Implant Neck Wall Thickness and Abutment Screw Size: A 3D Nonlinear Finite Element Analysis

Author:

Jeng Ming-Dih,Lin Yang-Sung,Lin Chun-LiORCID

Abstract

In this study, we evaluate the influence of implant neck wall thickness and abutment screw size on alveolar bone and implant component biomechanical responses using nonlinear finite element (FE) analysis. Twelve internal hexagon Morse taper implant–abutment connection FE models with three different implant sizes (diameters 4, 5, and 6 mm), secured with 1.4, 1.6, and 1.8 mm abutment screws to fit with three unilateral implant neck wall thicknesses of 0.45, 0.50, and 1.00 mm, were constructed to perform simulations. Nonlinear contact elements were used to simulate realistic interface fixation within the implant system. A 200 N concentrated force was applied toward the center of a hemispherical load cap and inclined 30° relative to the implant axis as the loading condition. The simulation results indicated that increasing the unilateral implant neck wall thickness from 0.45 to 1.00 mm can significantly decrease implant, abutment, and abutment screw stresses and bone strain, decreased to 58%, 48%, 54%, and 70%, respectively. Variations in abutment screw size only significantly influenced abutment screw stress, and the maximum stress dissipation rates were 10% and 29% when the diameter was increased from 1.4 to 1.6 and 1.8 mm, respectively. We conclude that the unilateral implant neck wall thickness is the major design factor for the implant system and implant neck wall thickness in effectively decreasing implant, abutment, and abutment screw stresses and bone strain.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference26 articles.

1. The influence of functional forces on the biomechanics of implant-supported prostheses—a review

2. Influence of implant design and bone quality on stress/strain distribution in bone around implants: A 3-dimensional finite element analysis;Tada;Int. J. Oral Maxillofac. Implants,2003

3. Biomechanical response of implant systems placed in the maxillary posterior region under various conditions of angulation, bone density, and loading;Lin;Int. J. Oral Maxillofac. Implants,2008

4. Mechanical resistance of screwless morse taper and screw-retained implant-abutment connections

5. The influence of implant-abutment connection to peri-implant bone loss: A systematic review and meta-analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3