The Antimicrobial Effectiveness and Cytotoxicity of the Antibiotic-Loaded Chitosan: ECM Scaffolds

Author:

Goller Shayla,Turner Neill J.ORCID

Abstract

Background: The development of multifunctional wound dressings with the ability to control hemostasis, limit infection and promote rapid wound healing and constructive tissue remodeling has been a challenge for many years. In view of these challenges, a hybrid scaffold platform was developed that combined two different extracellular matrices (ECM): ECM from decellularized mammalian tissue and ECM (chitosan) from crustaceans. Both types of ECM have well established clinical benefits that support and promote wound healing and control hemostasis. This scaffold platform could also be augmented with antibiotics to provide bactericidal activity directly to the wound site. Methods: Four different scaffold formulations were developed containing chitosan supplemented with either 20% or 50% urinary bladder matrix (UBM) hydrogel or 1% (w/v) or 10% (w/v) UBM–ECM particulates. 100% chitosan scaffolds were used as controls. The scaffolds were augmented with either minocycline or rifampicin. Escherichia Coli and Staphylococcus Aureus were used to assesses antimicrobial efficacy and duration of activity, while neutral red uptake assays were performed to establish direct and indirect cytotoxicity. Results: Results showed that scaffold handling properties, scaffold integrity over time and the efficacy and release rate of loaded antibiotics could be modified by altering scaffold composition. Moreover, antibiotics were easily released from the scaffold and could remain effective for up to 24 h by modifying the scaffold composition. Variable results with cytotoxicity testing show that further work is required to optimize the scaffold formulations but these proof of principle experiments suggest that these scaffolds have potential as bioactive wound dressings.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3