Abstract
Concrete and cement have been widely used in past decades as a result of urbanization. More and more supplementary cementitious materials are adopted in concrete because its production complements environmental conservation. The influence of slag, fly ash, limestone, etc., on compressive strength of concrete is of interest to engineers worldwide. Many previous studies were specific to certain engineering or certain experiments that could not reveal the nature of the influence of the three supplementary cementitious materials on concrete’s compressive strength. The research concerning the influence of two or more kinds of supplementary cementitious materials on concrete’s compressive strength is still unclear. Moreover, there is a lack of clarity on the optimum proportion of one or more certain cementitious materials in practical engineering or experiments. To overcome these problems, this study adopts the concrete compressive strength development over time (CCSDOT) model, which generates an explicit formula to conduct quantitative research based on extensive data. The CCSDOT model performs well in fitting the compressive strength development of concrete containing cement, slag, fly ash, and limestone flour. The results reveal the nature of the influence of the three supplementary cementitious materials on concrete’s compressive strength through the parameter analysis in the model. Two application cases are analyzed concerning the selection of the three supplementary cementitious materials and design of concrete mix proportion for practical engineering. It is concluded that the CCSDOT model and the method in this study can possibly provide guidance on both the selection of supplementary cementitious materials and the design of optimal concrete mix proportion for practical engineering. Therefore, the study is highly essential and useful.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献