Abstract
Today, energy issues are more important than ever. Because of the importance of environmental concerns, clean and renewable energies such as wind power have been most welcomed globally, especially in developing countries. Worldwide development of these technologies leads to the use of intelligent systems for monitoring and maintenance purposes. Besides, deep learning as a new area of machine learning is sharply developing. Its strong performance in computer vision problems has conducted us to provide a high accuracy intelligent machine vision system based on deep learning to estimate the wind turbine angular velocity, remotely. This velocity along with other information such as pitch angle and yaw angle can be used to estimate the wind farm energy production. For this purpose, we have used SSD (Single Shot Multi-Box Detector) object detection algorithm and some specific classification methods based on DenseNet, SqueezeNet, ResNet50, and InceptionV3 models. The results indicate that the proposed system can estimate rotational speed with about 99.05 % accuracy.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献