Abstract
We use a tunable commercial liquid-crystal device tuned to a quarter-wave retardance to study the generation and dynamics of different types of hybrid vector beams. The standard situation where the q-plate is illuminated by a Gaussian beam is compared with other cases where the input beam is a vortex or a pure vector beam. As a result, standard hybrid vector beams but also petal-like hybrid vector beams are generated. These beams are analyzed in the near field and compared with the far field distribution, where their hybrid nature is observed as a transformation of the intensity and polarization patterns. Analytical calculations and numerical results confirm the experiments. We include an approach that provides an intuitive physical explanation of the polarization patterns in terms of mode superpositions and their transformation upon propagation based on their different Gouy phase. The tunable q-plate device presents worthy advantages, since it allows a compact and efficient generation of pure and hybrid vector beams to study these effects.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献