Influence of Living and Dead Roots of Gansu Poplar on Water Infiltration and Distribution in Soil

Author:

Zhang Dashuai,Dai Yao,Wang Lingli,Chen LiangORCID

Abstract

During rapid urbanization, it is necessary to increase soil permeability and soil porosity for reducing urban runoff and waterlogging risk. Woody plants are known to increase soil porosity and preferential flow in soil via living roots growth and dead roots decay. However, the primary results of dead woody plant roots on soil porosity and permeability have been discussed based only on the hypotheses or assumptions of different researchers. In this study, living and dead roots (decayed under natural conditions for more than 5 years) of Gansu poplar trees (Populus gansuensis) were selected. They were selected to compare the influence between living and dead roots on water infiltration rate and soil porosity in a cylindrical container (diameter = 20 cm, height = 66 cm) under laboratory conditions. Results indicated that the steady-state water fluxes at the bottom of the containers without roots (control), with living roots, and with dead roots were 54.75 ± 0.80, 61.31 ± 0.61, and 55.97 ± 0.59 cm d−1, respectively. Both living roots and dead roots increased the water infiltration rates in soil and also increased the water storage capacity of soil. The water storage capacities of soil without roots, with living roots, and with dead roots were 0.279, 0.317, and 0.322 cm3 cm−3, respectively. The results from SEM indicated that smaller pores (30–50 μm) were in living roots and larger pores (100–1000 μm) were in dead roots. The soil permeability was increased by living roots possibly due to the larger channels generated on the surface of the roots; however, water absorbed into the dead roots resulted in greater water storage capacity.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3