Numerical Investigation into the Effect of Different Parameters on the Geometrical Precision in the Laser-Based Powder Bed Fusion Process Chain

Author:

De Baere DavidORCID,Moshiri MandanàORCID,Mohanty SankhyaORCID,Tosello GuidoORCID,Hattel Jesper Henri

Abstract

Due to the layer-by-layer nature of the process, parts produced by laser-based powder bed fusion (LPBF) have high residual stresses, causing excessive deformations. To avoid this, parts are often post-processed by subjecting them to specially designed heat treatment cycles before or after their removal from the base plate. In order to investigate the effects of the choice of post-processing steps, in this work the entire LPBF process chain is modelled in a commercial software package. The developed model illustrates the possibilities of implementing and tailoring the process chain model for metal additive manufacturing using a general purpose finite element (FE) solver. The provided simplified computational example presents an idealised model to analyse the validity of implementing the LPBF process chain in FE software. The model is used to evaluate the effect of the order of the process chain, the heat treatment temperature and the duration of the heat treatment. The results show that the model is capable of qualitatively capturing the effect of the stress relaxation that occurs during a heat treatment at elevated temperature. Due to its implementation, the model is relatively insensitive to duration and heat treatment temperature, at least as long as it is above the relaxation temperature. Furthermore, the simulations suggest that, when post-processing, it is necessary to perform the stress relaxation before the part is removed from the base plate, in order to avoid a significant increase of the deformation. The paper demonstrates the capability of the simulation tool to evaluate the effects of variations in the process chain steps and highlights its potential usage in directing decision-making for LPBF process chain design.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3