Abstract
The early and accurate diagnosis of skin cancer is crucial for providing patients with advanced treatment by focusing medical personnel on specific parts of the skin. Networks based on encoder–decoder architectures have been effectively implemented for numerous computer-vision applications. U-Net, one of CNN architectures based on the encoder–decoder network, has achieved successful performance for skin-lesion segmentation. However, this network has several drawbacks caused by its upsampling method and activation function. In this paper, a fully convolutional network and its architecture are proposed with a modified U-Net, in which a bilinear interpolation method is used for upsampling with a block of convolution layers followed by parametric rectified linear-unit non-linearity. To avoid overfitting, a dropout is applied after each convolution block. The results demonstrate that our recommended technique achieves state-of-the-art performance for skin-lesion segmentation with 94% pixel accuracy and a 88% dice coefficient, respectively.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference40 articles.
1. Skin Lesion Analysis toward Melanoma Detection: A Challenge at the International Symposium on Biomedical Imaging (ISBI) 2016, hosted by the International Skin Imaging Collaboration (ISIC);Gutman;arXiv,2016
2. International agency for research on cancer;Chang;Asian Pac. J. Cancer Prev.,2003
3. Patterns of detection in patients with cutaneous melanoma
4. Diagnostic accuracy of dermoscopy
5. Fully Convolutional Networks for Semantic Segmentation
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献