Enhanced out of Plane Electrical Conductivity in Polymer Composites Induced by CO2 Laser Irradiation of Carbon Fibers

Author:

Karakassides Anastasios,Karakassides AngelikiORCID,Konstantinidou Michaella,Paipetis Alkiviadis S.,Papakonstantinou Pagona

Abstract

The creation of a hierarchical interface between the carbon fiber (CF) and the epoxy resin matrix of fiber-reinforced polymer (CFRP) composites has become an effective strategy for introducing multifunctional properties. Although the efficacy of many hierarchical interfaces has been established in lab-scale, their production is not amenable to high-volume, continuous, cost effective fiber production, which is required for the large-scale commercialization of composites. This work investigates the use of commercially available CO2 laser as a means of nano-structuring the surface of carbon fiber (CF) tows in an incessant throughput procedure. Even though the single carbon fiber tensile strength measurements showed a decrease up to 68% for the exposed CFs, the electrical conductivity exhibited an increment up to 18.4%. Furthermore, results on laminates comprised of irradiated unidirectional CF cloth, demonstrated an enhancement in out of plane electrical conductivity up to 43%, while preserved the Mode-I interlaminar fracture toughness of the composite, showing the potential for multifunctionality. This work indicates that the laser-induced graphitization of the CF surface can act as an interface for fast and cost-effective manufacturing of multifunctional CFRP composite materials.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3