Abstract
To improve the satisfaction and acceptance of automatic driving, we propose a deep reinforcement learning (DRL)-based autonomous car-following (CF) decision-making strategy using naturalist driving data (NDD). This study examines the traits of CF behavior using 1341 pairs of CF events taken from the Next Generation Simulation (NGSIM) data. Furthermore, in order to improve the random exploration of the agent’s action, the dynamic characteristics of the speed-acceleration distribution are established in accordance with NDD. The action’s varying constraints are achieved via a normal distribution 3σ boundary point-to-fit curve. A multiobjective reward function is designed considering safety, efficiency, and comfort, according to the time headway (THW) probability density distribution. The introduction of a penalty reward in mechanical energy allows the agent to internalize negative experiences. Next, a model of agent-environment interaction for CF decision-making control is built using the deep deterministic policy gradient (DDPG) method, which can explore complicated environments. Finally, extensive simulation experiments validate the effectiveness and accuracy of our proposal, and the driving strategy is learned through real-world driving data, which is better than human data.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献