N,Zn-Doped Fluorescent Sensor Based on Carbon Dots for the Subnanomolar Detection of Soluble Cr(VI) Ions

Author:

Adotey Enoch Kwasi1ORCID,Amouei Torkmahalleh Mehdi2,Hopke Philip K.3ORCID,Balanay Mannix P.4ORCID

Affiliation:

1. Department of Chemical and Material Engineering, Nazarbayev University, Astana 010000, Kazakhstan

2. Division of Environmental and Occupational Health Sciences, School of Public Health, University of Illinois at Chicago, Chicago, IL 60612, USA

3. Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA

4. Department of Chemistry, Nazarbayev University, Astana 010000, Kazakhstan

Abstract

The development of a fluorescent sensor has attracted much attention for the detection of various toxic pollutants in the environment. In this work, fluorescent carbon dots (N,Zn-CDs) doped with nitrogen and zinc were synthesized using citric acid monohydrate and 4-pyridinecarboxyaldehyde as carbon and nitrogen sources, respectively. The synthesized N,Zn-CDs served as an “off” fluorescence detector for the rapid and sensitive detection of hexavalent chromium ions (Cr(VI)). The zinc metal integrated into the heteroatomic fluorescent carbon dot played a functional role by creating a coordination site for the hydrogen ions that were displaced after the addition of Cr to the solution matrix. The stepwise addition of Cr(VI) effectively quenched the fluorescence intensity of the N,Zn-CDs, and this phenomenon was attributed to the internal filter effect. A low detection limit of 0.47 nmol/L for Cr(VI) was achieved in the fluorescence experiments. Real water samples were used to evaluate the practical application of N,Zn-CDs for the quantification of Cr(VI). The results show acceptable recoveries and agreement with ion chromatography-ultraviolet spectrometry results. These good recoveries indicate that the fluorescence probe is very well suited for environmental measurements.

Funder

Nazarbayev University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3