Abstract
We study the hadron–quark hybrid equation of state (EOS) of compact-star matter. The Nambu–Jona-Lasinio (NJL) local SU (3) model with vector-type interaction is used to describe the quark matter phase, while the relativistic mean field (RMF) theory with the scalar-isovector δ-meson effective field is adopted to describe the hadronic matter phase. It is shown that the larger the vector coupling constant GV, the lower the threshold density for the appearance of strange quarks. For a sufficiently small value of the vector coupling constant, the functions of the mass dependence on the baryonic chemical potential have regions of ambiguity that lead to a phase transition in nonstrange quark matter with an abrupt change in the baryon number density. We show that within the framework of the NJL model, the hypothesis on the absolute stability of strange quark matter is not realized. In order to describe the phase transition from hadronic matter to quark matter, Maxwell’s construction is applied. It is shown that the greater the vector coupling, the greater the stiffness of the EOS for quark matter and the phase transition pressure. Our results indicate that the infinitesimal core of the quark phase, formed in the center of the neutron star, is stable.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献