An Efficient Login Authentication System against Multiple Attacks in Mobile Devices

Author:

Li YangORCID,Yun XinyuORCID,Fang LimingORCID,Ge ChunpengORCID

Abstract

Access management of IoT devices is extremely important, and a secure login authentication scheme can effectively protect users’ privacy. However, traditional authentication schemes are threatened by shoulder-surfing attacks, and biometric-based schemes, such as fingerprint recognition and face recognition, that are commonly used today can also be cracked. Researchers have proposed some schemes for current attacks, but they are limited by usability. For example, the login authentication process requires additional device support. This method solves the problem of attacks, but it is unusable, which limits its application. At present, most authentication schemes for the Internet of Things and mobile platforms either focus on security, thus ignoring availability, or have excellent convenience but insufficient security. This is a symmetry problem worth exploring. Therefore, users need a new type of login authentication scheme that can balance security and usability to protect users’ private data or maintain device security. In this paper, we propose a login authentication scheme named PinWheel, which combines a textual password, a graphical password, and biometrics to prevent both shoulder-surfing attacks and smudge attacks and solves the current schemes’ lack of usability. We implemented PinWheel and evaluated it from the perspective of security and usability. The experiments required 262 days, and 573 subjects participated in our investigation. The evaluation results show that PinWheel can at least effectively resist both mainstream attacks and is superior to most existing schemes in terms of usability.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference25 articles.

1. Providing a Secure Hybrid Method for Graphical Password Authentication to Prevent Shoulder Surfing, Smudge and Brute Force Attack;Sepideh;Int. J. Comput. Inf. Eng.,2019

2. Graphical passwords: Behind the attainment of goals

3. On the Soundness and Security of Privacy-Preserving SVM for Outsourcing Data Classification

4. What’s in a Name? Using Words’ Uniqueness to Identify Hackers in Brute Force Attacks;Rechavi;Int. J. Cyber Criminol.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3