Individual and Combined Toxic Effects of Nano-ZnO and Polyethylene Microplastics on Mosquito Fish (Gambusia holbrooki)

Author:

Banaee Mahdi1,Zeidi Amir1,Sinha Reshma2ORCID,Faggio Caterina3ORCID

Affiliation:

1. Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan 6361663973, Iran

2. Department of Animal Science, School of Life Sciences, Central University of Himachal Pradesh, Kangra 176206, India

3. Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno, d’Alcontres 31, 98166 Messina, Italy

Abstract

The omnipresence of microplastics and nanoparticles has led to their entry into the fresh and marine aquatic systems and affected the biota. The present study aims to evaluate the impact of the interaction of polyethylene microplastic (PE-MPs) and zinc oxide nanoparticles (ZnO-NPs) in mosquito fish, Gambusia holbrooki. For this, fish were exposed to 100 µg L−1 PE-MPs (group 2), 200 µg L−1 PE-MPs (group 3), 50 µg L−1 ZnO-NPs (group 4), 50 µg L−1 ZnO-NPs combined with 100 µg L−1 PE-MPs (group 5), and 200 µg L−1 PE-MPs (group 6) and control (group 1) for 14 days. The assessment was made through accumulation studies (MPs and Zn) and antioxidant assay. Significant elevation in the activity of catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase levels was observed in ZnO-NPs alone and in combination with PE-MPs (100 and 200 µg L−1) groups only. High malondialdehyde levels were observed in all the exposed groups. Concordantly total antioxidant (TAN) levels displayed a significant reduction in all treated groups compared to control. Accumulation study on microplastic suggested liver-targeted accumulation of PE-MPs, while for ZnO-NPs, observed PE-MPs assisted accumulation. The study affirms the induction of oxidative stress and ZnO-NPs-induced toxicity facilitated by PE-MPs in fish.

Funder

Behbahan Khatam Alanbia University of Technology, Iran

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3