Influence of Contact Stress on Surface Microstructure and Wear Property of D2/U71Mn Wheel-Rail Material

Author:

Liu Chun-Peng,Zhao Xiu-Juan,Liu Peng-Tao,Pan Jin-Zhi,Ren Rui-Ming

Abstract

To investigate the relationship between surface microstructure and wear mechanism in D2/U71Mn wheel-rail material under different contact stress conditions, rolling wear tests using a GPM-40 wear machine to simulate the wheel-rail operation was performed. After wear tests, an optical microscope (OM), scanning electron microscope (SEM) and micro-hardness testers were used to characterize the microstructure and fatigue wear cracks. The results show that the thickness of the plastic deformation layer and surface hardness is increased with the increase of contact stress. Under high contact stress condition (1200 MPa), the severe plastic deformation layer led to the formation of fatigue wear of wheel-rail samples. Under a contact stress of 700 MPa, the wear mechanism of samples is adhesive wear and wear rate is low. With the increase of contact stress, the fatigue cracks are gradually severe. Under a contact stress of 1200 MPa, the wear mechanism of samples becomes fatigue wear and the fatigue wear cracks cause the increase of wear rate. The fatigue wear can accelerate the wear failure of wheel-rail samples. The fatigue wear cracks of wheel samples are severer than that of rail samples due to both the rate of plastic strain and the content of proeutectoid ferrite.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3