Evaluation of the Performance of Nature-Based Constructed Wetlands for Treating Wastewater from Various Land Uses in Korea

Author:

Choi Hyeseon1,Jeon Minsu2,Geronimo Franz Kevin3,Kim Lee-Hyung3,Min Joong-Hyuk1ORCID

Affiliation:

1. Geum River Environment Research Center, National Institute of Environmental Research, Chungbuk 29027, Republic of Korea

2. Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology, Goyang 10223, Republic of Korea

3. Department of Civil and Environmental Engineering, Kongju National University, 1223-24, Cheonandaero, Seobukgu, Cheonan 31080, Republic of Korea

Abstract

Land use changes, specifically the growth of impervious areas due to urbanization, exacerbate non-point-source pollutants in stormwater runoff, surpassing discharge from point sources in Korea. The application of nature-based solutions, such as constructed wetlands (CWs), is becoming popular for stormwater treatment, but challenges arise when background concentrations are overlooked, leading to reduced pollutant removal efficiency. This study aims to propose a plan for the sustainability of CWs by evaluating design appropriateness and utilizing existing monitoring results. The evaluation of 63 CWs reveals that meteorological factors, specifically antecedent dry days and rainfall depth, have significant impacts on urban stormwater runoff quality in various land uses, affecting the performance of CWs. Designing CWs considering land use is crucial due to the considerable concentration variations across different land uses. Improving CW performance requires proper maintenance strategies to ensure effective pollutant removal mechanisms, especially for poorly degradable organic substances post treatment. Rainfall characteristics play a pivotal role in CW design and operation, affecting capacity, efficiency estimation, and maintenance frequency. Considering various factors such as land use, watershed characteristics, and ease of maintenance is essential when utilizing CWs. This study’s findings contribute to the design and operation of future CWs, emphasizing the need for continuous performance analyses through long-term monitoring.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3