Author:
Zhang Chunguo,Yang Shuangge
Abstract
Tensile strength ft and fracture toughness KIC of ceramic are not deterministic properties or fixed values, but fluctuate within certain ranges. A nonlinear elastic fracture mechanics model was developed in this study and combined with the common normal distribution to predict ceramic’s ft and KIC with consideration of their scatters in a statistical sense. In the model, the relative characteristic crack size a*ch/G (characteristic crack size a*ch, average grain size G) was determined based on the fracture measurements on five types of ceramics with different G from 2 to 20 μm in the reference (Usami S, et al., Eng. Fract Mech. 1986, 23, 745). The combined application of the model and normal distribution has two functions: (i) probabilistic ft and KIC can be derived from seemingly randomly varied fracture tests on small ceramic specimens containing different initial defects/cracks, and (ii) with ft or KIC values (corresponding mean and standard deviation), fracture strength of heterogeneous samples with and without cracks can be predicted by considering scatter described by specified reliability. For the fine ceramics, the predicted results containing the mean and the upper and lower bounds with 96% reliability gained with the model, match very well with the experimental results (a, σN).
Subject
General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献