Polymer-to-Carbon Conversion: From Nature to Technology

Author:

Sharma SwatiORCID

Abstract

Glassy carbon is derived from synthetic organic polymers that undergo the process of coking during their pyrolysis. Polymer-to-carbon conversion (hereafter referred to as PolyCar) also takes place in nature, and is indeed responsible for the formation of various naturally occurring carbon allotropes. In the last few decades the PolyCar concept has been utilized in technological applications, i.e., specific polymers are patterned into the desired shapes and intentionally converted into carbon by a controlled heat-treatment. Device fabrication using glassy carbon is an excellent example of the use of the PolyCar process in technology, which has rapidly progressed from conventional to micro- and nanomanufacturing. While the technique itself is simple, one must have a good understanding of the carbonization mechanism of the polymer, which in turn determines whether or not the resulting material will be glassy carbon. Publications that comprise this special issue shed light on several aspects of the formation, properties and performance of glassy carbon in the cutting-edge technological applications. The results of detailed material characterization pertaining to two important research areas, namely neural electrodes and precision glass molding, are presented as examples. I hope that the readers will enjoy as well as benefit from this collection.

Publisher

MDPI AG

Subject

General Materials Science

Reference9 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3