Outcomes of Deferoxamine Action on H2O2-Induced Growth Inhibition and Senescence Progression of Human Endometrial Stem Cells

Author:

Shatrova Alla,Burova Elena,Kharchenko Marianna,Smirnova Irina,Lyublinskaya Olga,Nikolsky Nikolay,Borodkina AleksandraORCID

Abstract

Mesenchymal stem cells (MSCs) are broadly applied in regenerative therapy to replace cells that are lost or impaired during disease. The low survival rate of MSCs after transplantation is one of the major limitations heavily influencing the success of the therapy. Unfavorable microenvironments with inflammation and oxidative stress in the damaged regions contribute to MSCs loss. Most of the strategies developed to overcome this obstacle are aimed to prevent stress-induced apoptosis, with little attention paid to senescence—another common stress reaction of MSCs. Here, we proposed the strategy to prevent oxidative stress-induced senescence of human endometrial stem cells (hMESCs) based on deferoxamine (DFO) application. DFO prevented DNA damage and stress-induced senescence of hMESCs, as evidenced by reduced levels of reactive oxygen species, lipofuscin, cyclin D1, decreased SA-β-Gal activity, and improved mitochondrial function. Additionally, DFO caused accumulation of HIF-1α, which may contribute to the survival of H2O2-treated cells. Importantly, cells that escaped senescence due to DFO preconditioning preserved all the properties of the initial hMESCs. Therefore, once protecting cells from oxidative damage, DFO did not alter further hMESCs functioning. The data obtained may become the important prerequisite for development of a new strategy in regenerative therapy based on MSCs preconditioning using DFO.

Funder

RUSSIAN SCIENCE FOUNDATION

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3