Author:
Chesnokov Olga,Visitdesotrakul Pimnitah,Kalani Komal,Nefzi Adel,Oleinikov Andrew V.
Abstract
Specific adhesion of P. falciparum parasite-infected erythrocytes (IE) in deep vascular beds can result in severe complications, such as cerebral malaria, placental malaria, respiratory distress, and severe anemia. Cerebral malaria and severe malaria syndromes were associated previously with sequestration of IE to a microvasculature receptor ICAM-1. The screening of Torrey Pines Scaffold Ranking library, which consists of more than 30 million compounds designed around 75 molecular scaffolds, identified small molecules that inhibit cytoadhesion of ICAM-1-binding IE to surface-immobilized receptor at IC50 range down to ~350 nM. With their low cytotoxicity toward erythrocytes and human endothelial cells, these molecules might be suitable for development into potentially effective adjunct anti-adhesion drugs to treat cerebral and/or severe malaria syndromes. Our two-step high-throughput screening approach is specifically designed to work with compound mixtures to make screening and deconvolution to single active compounds fast and efficient.
Funder
National Institute of Allergy and Infectious Diseases
State of Florida, Department of Health
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献