Peptide/β-Peptoid Hybrids with Activity against Vancomycin-Resistant Enterococci: Influence of Hydrophobicity and Structural Features on Antibacterial and Hemolytic Properties

Author:

Vestergaard MartinORCID,Skive Bolette,Domraceva Ilona,Ingmer Hanne,Franzyk HenrikORCID

Abstract

Infections with enterococci are challenging to treat due to intrinsic resistance to several antibiotics. Especially vancomycin-resistant Enterococcus faecium and Enterococcus faecalis are of considerable concern with a limited number of efficacious therapeutics available. From an initial screening of 20 peptidomimetics, 11 stable peptide/β-peptoid hybrids were found to have antibacterial activity against eight E. faecium and E. faecalis isolates. Microbiological characterization comprised determination of minimal inhibitory concentrations (MICs), probing of synergy with antibiotics in a checkerboard assay, time–kill studies, as well as assessment of membrane integrity. E. faecium isolates proved more susceptible than E. faecalis isolates, and no differences in susceptibility between the vancomycin-resistant (VRE) and -susceptible E. faecium isolates were observed. A test of three peptidomimetics (Ac-[hArg-βNsce]6-NH2, Ac-[hArg-βNsce-Lys-βNspe]3-NH2 and Oct-[Lys-βNspe]6-NH2) in combination with conventional antibiotics (vancomycin, gentamicin, ciprofloxacin, linezolid, rifampicin or azithromycin) revealed no synergy. The same three potent analogues were found to have a bactericidal effect with a membrane-disruptive mode of action. Peptidomimetics Ac-[hArg-βNsce-Lys-βNspe]3-NH2 and Oct-[Lys-βNspe]6-NH2 with low MIC values (in the ranges 2–8 µg/mL and 4–16 µg/mL against E. faecium and E. faecalis, respectively) and displaying weak cytotoxic properties (i.e., <10% hemolysis at a ~100-fold higher concentration than their MICs; IC50 values of 73 and 41 µg/mL, respectively, against HepG2 cells) were identified as promising starting points for further optimization studies.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3