Erythritol Ameliorates Small Intestinal Inflammation Induced by High-Fat Diets and Improves Glucose Tolerance

Author:

Kawano Rena,Okamura TakuroORCID,Hashimoto YoshitakaORCID,Majima Saori,Senmaru Takafumi,Ushigome EmiORCID,Asano Mai,Yamazaki Masahiro,Takakuwa Hiroshi,Sasano Ryoichi,Nakanishi Naoko,Hamaguchi MasahideORCID,Fukui MichiakiORCID

Abstract

Background: Erythritol, a sugar alcohol, is widely used as a substitute for sugar in diets for patients with diabetes or obesity. Methods: In this study, we aimed to investigate the effects of erythritol on metabolic disorders induced by a high-fat diet in C57BL/6J mice, while focusing on changes in innate immunity. Results: Mice that were fed a high-fat diet and administered water containing 5% erythritol (Ery group) had markedly lower body weight, improved glucose tolerance, and markedly higher energy expenditure than the control mice (Ctrl group) (n = 6). Furthermore, compared with the Ctrl group, the Ery group had lesser fat deposition in the liver, smaller adipocytes, and significantly better inflammatory findings in the small intestine. The concentrations of short-chain fatty acids (SCFAs), such as acetic acid, propanoic acid, and butanoic acid, in the serum, feces, and white adipose tissue of the Ery group were markedly higher than those in the Ctrl group. In flow cytometry experiments, group 3 innate lymphoid cell (ILC3) counts in the lamina propria of the small intestine and ILC2 counts in the white adipose tissue of the Ery group were markedly higher than those in the Ctrl group. Quantitative real-time reverse transcription polymerase chain reaction analyses showed that the Il-22 expression in the small intestine of the Ery group was markedly higher than that in the Ctrl group. Conclusions: Erythritol markedly decreased metabolic disorders such as diet-induced obesity, glucose intolerance, dyslipidemia, and fat accumulation in the mouse liver by increasing SCFAs and modulating innate immunity.

Funder

The Japan Food Chemical Research Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3