Abstract
The development of a biomimetic neuronal network from neural cells is a big challenge for researchers. Recent advances in nanotechnology, on the other hand, have enabled unprecedented tools and techniques for guiding and directing neural stem cell proliferation and differentiation in vitro to construct an in vivo-like neuronal network. Nanotechnology allows control over neural stem cells by means of scaffolds that guide neurons to reform synaptic networks in suitable directions in 3D architecture, surface modification/nanopatterning to decide cell fate and stimulate/record signals from neurons to find out the relationships between neuronal circuit connectivity and their pathophysiological functions. Overall, nanotechnology-mediated methods facilitate precise physiochemical controls essential to develop tools appropriate for applications in neuroscience. This review emphasizes the newest applications of nanotechnology for examining central nervous system (CNS) roles and, therefore, provides an insight into how these technologies can be tested in vitro before being used in preclinical and clinical research and their potential role in regenerative medicine and tissue engineering.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献