Importance of Genetic Polymorphisms in MT1 and MT2 Genes in Metals Homeostasis and Their Relationship with the Risk of Acute Pancreatitis Occurrence in Smokers—Preliminary Findings

Author:

Ściskalska MilenaORCID,Ołdakowska Monika,Milnerowicz Halina

Abstract

This study was aimed at evaluating the changes in metallothionein (MT) concentration in the blood of patients with acute pancreatitis (AP) and healthy subjects, taking into account the extracellular (plasma) and intracellular (erythrocyte lysate) compartments. The impact of single-nucleotide polymorphisms (SNPs) in the MT1A (rs11640851), MT1B (rs964372) and MT2A (rs10636) genes on MT concentration and their association with the concentration of metals (Cu, Zn, Cd) and ceruloplasmin as Cu-related proteins were analyzed. The concentration of a high-sensitivity C-reactive protein (hs-CRP) and IL-6 as markers of inflammation, and malonyldialdehyde (MDA), superoxide dismutase (SODs) activity and the value of total antioxidant capacity (TAC) as parameters describing the pro/antioxidative balance were also assessed. In the AP patient groups, an increased MT concentration in erythrocyte lysate compared to healthy subjects was shown, especially in individuals with the GG genotype for rs964372 in the MT1B gene. A Zn concentration was especially decreased in the blood of smoking AP patients with the AA genotype for SNP rs11640851 in the MT1A gene and the GC genotype for SNP rs10636 in MT2A, compared to non-smokers with AP, which was accompanied by an increase in the value of the Cu/Zn ratio. The exposure to tobacco smoke xenobiotics increased the risk of AP occurrence in subjects with the CC genotype for SNP rs11640851 in the MT1A gene by more than fourfold. The investigated polymorphisms, rs11640851 in the MT1A gene, rs964372 in the MT1B gene and rs10636 in the MT2A gene, seem to be an important factor in maintaining homeostasis in an organism under oxidative stress conditions.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3