The CPGs for Limbed Locomotion–Facts and Fiction

Author:

Grillner Sten,Kozlov AlexanderORCID

Abstract

The neuronal networks that generate locomotion are well understood in swimming animals such as the lamprey, zebrafish and tadpole. The networks controlling locomotion in tetrapods remain, however, still enigmatic with an intricate motor pattern required for the control of the entire limb during the support, lift off, and flexion phase, and most demandingly when the limb makes contact with ground again. It is clear that the inhibition that occurs between bursts in each step cycle is produced by V2b and V1 interneurons, and that a deletion of these interneurons leads to synchronous flexor–extensor bursting. The ability to generate rhythmic bursting is distributed over all segments comprising part of the central pattern generator network (CPG). It is unclear how the rhythmic bursting is generated; however, Shox2, V2a and HB9 interneurons do contribute. To deduce a possible organization of the locomotor CPG, simulations have been elaborated. The motor pattern has been simulated in considerable detail with a network composed of unit burst generators; one for each group of close synergistic muscle groups at each joint. This unit burst generator model can reproduce the complex burst pattern with a constant flexion phase and a shortened extensor phase as the speed increases. Moreover, the unit burst generator model is versatile and can generate both forward and backward locomotion.

Funder

Medicinska Forskningsrådet

EU/FP7

Karolinska Institutet

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3