An Ensemble Classifier to Predict Protein–Protein Interactions by Combining PSSM-based Evolutionary Information with Local Binary Pattern Model

Author:

Li YangORCID,Li Li-Ping,Wang Lei,Yu Chang-Qing,Wang Zheng,You Zhu-Hong

Abstract

Protein plays a critical role in the regulation of biological cell functions. Among them, whether proteins interact with each other has become a fundamental problem, because proteins usually perform their functions by interacting with other proteins. Although a large amount of protein–protein interactions (PPIs) data has been produced by high-throughput biotechnology, the disadvantage of biological experimental technique is time-consuming and costly. Thus, computational methods for predicting protein interactions have become a research hot spot. In this research, we propose an efficient computational method that combines Rotation Forest (RF) classifier with Local Binary Pattern (LBP) feature extraction method to predict PPIs from the perspective of Position-Specific Scoring Matrix (PSSM). The proposed method has achieved superior performance in predicting Yeast, Human, and H. pylori datasets with average accuracies of 92.12%, 96.21%, and 86.59%, respectively. In addition, we also evaluated the performance of the proposed method on the four independent datasets of C. elegans, H. pylori, H. sapiens, and M. musculus datasets. These obtained experimental results fully prove that our model has good feasibility and robustness in predicting PPIs.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference44 articles.

1. Improving protein-protein interaction prediction using evolutionary information from low-quality MSAs;Várnai;PLoS ONE,2017

2. Protein-protein interaction prediction based on multiple kernels and partial network with linear programming;Lei;BMC Syst. Biol.,2016

3. A Deep Learning Framework for Robust and Accurate Prediction of ncRNA-Protein Interactions Using Evolutionary Information

4. The OncoPPi network of cancer-focused protein-protein interactions to inform biological insights and therapeutic strategies;Li;Nat. Commun.,2017

5. Spontaneous and specific chemical cross-linking in live cells to capture and identify protein interactions

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3