Abstract
Chlorophyll is an essential pigment for photosynthesis in crops, and leaf chlorophyll content can be used as an indicator for crop growth status and help guide nitrogen fertilizer applications. Estimating crop chlorophyll content plays an important role in precision agriculture. In this study, a variable, rate of change in reflectance between wavelengths ‘a’ and ‘b’ (RCRWa-b), derived from in situ hyperspectral remote sensing data combined with four advanced machine learning techniques, Gaussian process regression (GPR), random forest regression (RFR), support vector regression (SVR), and gradient boosting regression tree (GBRT), were used to estimate the chlorophyll content (measured by a portable soil–plant analysis development meter) of rice. The performances of the four machine learning models were assessed and compared using root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2). The results revealed that four features of RCRWa-b, RCRW551.0–565.6, RCRW739.5–743.5, RCRW684.4–687.1 and RCRW667.9–672.0, were effective in estimating the chlorophyll content of rice, and the RFR model generated the highest prediction accuracy (training set: RMSE = 1.54, MAE =1.23 and R2 = 0.95; validation set: RMSE = 2.64, MAE = 1.99 and R2 = 0.80). The GPR model was found to have the strongest generalization (training set: RMSE = 2.83, MAE = 2.16 and R2 = 0.77; validation set: RMSE = 2.97, MAE = 2.30 and R2 = 0.76). We conclude that RCRWa-b is a useful variable to estimate chlorophyll content of rice, and RFR and GPR are powerful machine learning algorithms for estimating the chlorophyll content of rice.
Funder
National Natural Science Foundation of China
Sichuan Science and Technology Program
the Fundamental Research Funds for the Central Universities
Subject
General Earth and Planetary Sciences
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献