Using Machine Learning Algorithms to Determine the Post-COVID State of a Person by Their Rhythmogram

Author:

Stasenko Sergey V.1ORCID,Kovalchuk Andrey V.2,Eremin Evgeny V.3,Drugova Olga V.4,Zarechnova Natalya V.5,Tsirkova Maria M.6,Permyakov Sergey A.3,Parin Sergey B.3,Polevaya Sofia A.3

Affiliation:

1. Neurotechnology Department, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia

2. Laboratory of Autowave Processes, Institute of Applied Physics, Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia

3. Faculty of Social Sciences, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia

4. Department of Medical Biophysics, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia

5. GBUZ NO “Nizhny Novgorod Regional Clinical Oncological Dispensary”, 603126 Nizhny Novgorod, Russia

6. Clinical Hospital No. 2, Privolzhsky District Medical Center, 603032 Nizhny Novgorod, Russia

Abstract

This study introduces a novel method for detecting the post-COVID state using ECG data. By leveraging a convolutional neural network, we identify “cardiospikes” present in the ECG data of individuals who have experienced a COVID-19 infection. With a test sample, we achieve an 87 percent accuracy in detecting these cardiospikes. Importantly, our research demonstrates that these observed cardiospikes are not artifacts of hardware–software signal distortions, but rather possess an inherent nature, indicating their potential as markers for COVID-specific modes of heart rhythm regulation. Additionally, we conduct blood parameter measurements on recovered COVID-19 patients and construct corresponding profiles. These findings contribute to the field of remote screening using mobile devices and heart rate telemetry for diagnosing and monitoring COVID-19.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3