Trends in Compressive Sensing for EEG Signal Processing Applications

Author:

Gurve DharmendraORCID,Delisle-Rodriguez DenisORCID,Bastos-Filho TeodianoORCID,Krishnan SridharORCID

Abstract

The tremendous progress of big data acquisition and processing in the field of neural engineering has enabled a better understanding of the patient’s brain disorders with their neural rehabilitation, restoration, detection, and diagnosis. An integration of compressive sensing (CS) and neural engineering emerges as a new research area, aiming to deal with a large volume of neurological data for fast speed, long-term, and energy-saving purposes. Furthermore, electroencephalography (EEG) signals for brain–computer interfaces (BCIs) have shown to be very promising, with diverse neuroscience applications. In this review, we focused on EEG-based approaches which have benefited from CS in achieving fast and energy-saving solutions. In particular, we examine the current practices, scientific opportunities, and challenges of CS in the growing field of BCIs. We emphasized on summarizing major CS reconstruction algorithms, the sparse basis, and the measurement matrix used in CS to process the EEG signal. This literature review suggests that the selection of a suitable reconstruction algorithm, sparse basis, and measurement matrix can help to improve the performance of current CS-based EEG studies. In this paper, we also aim at providing an overview of the reconstruction free CS approach and the related literature in the field. Finally, we discuss the opportunities and challenges that arise from pushing the integration of the CS framework for BCI applications.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3