Abstract
(1) Background: Water transport systems play an important role in maintaining plant growth and development. The plasticity responses of the xylem anatomical traits of different species to the environment are different. Studies have shown that there are annual growth rings in the secondary root xylem of perennial herbaceous species. Studies on xylem anatomical traits, however, have mainly focused on woody species, with little attention given to herbaceous species. (2) Methods: We set 14 sampling sites along a rainfall gradient in arid and semiarid regions, and collected the main roots of native (Potentilla) and non-native (Medicago) perennial forbs. The xylem anatomical traits of the plant roots were obtained by paraffin section, and the relationships between the xylem traits of forbs were analyzed by a Pearson correlation. (3) Results: In the fixed measurement area (850 μm × 850 μm), the vessel number (NV) of Potentilla species was higher than that of Medicago species, while the hydraulic diameter (Dh) and mean vessel area (MVA) of Potentilla species were lower than those of Medicago species. With the increase in precipitation along the rainfall gradient, the Dh (R2 = 0.403, p = 0.03) and MVA (R2 = 0.489, p = 0.01) of Medicago species increased significantly, and NV (R2 = 0.252, p = 0.09) decreased, while the hydraulic traits of Potentilla species showed no significant trend with regard to the rainfall gradient. (4) Conclusions: The hydraulic efficiency of non-native Medicago forbs was higher than that of native Potentilla forbs, and the hydraulic safety of native Potentilla forbs was higher than that of non-native Medicago forbs. With the decrease in precipitation, the hydraulic strategies of non-native Medicago forbs changed from efficiency to safety, while native Potentilla forbs were not sensitive to variations in precipitation.
Funder
Major Program of National Natural Science Foundation of China
National Natural Science Foundation of China