The Wheat Endophyte Epicoccum layuense J4-3 Inhibits Fusarium graminearum and Enhances Plant Growth

Author:

Nzabanita Clement1,Zhang Lihang1ORCID,Wang Yanfei1,Wang Shuangchao1,Guo Lihua1

Affiliation:

1. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China

Abstract

Fungal endophytes are well-known for their ability to promote plant growth and hinder fungal diseases, including Fusarium head blight (FHB) caused by Fusarium graminearum. This study aimed to characterize the biocontrol efficacy of strain J4-3 isolated from the stem of symptomless wheat collected from Heilongjiang Province, China. It was identified as Epicoccum layuense using morphological characteristics and phylogenetic analysis of the rDNA internal transcribed spacer (ITS) and beta-tubulin (TUB). In a dual culture assay, strain J4-3 significantly inhibited the mycelial growth of F. graminearum strain PH-1 and other fungal pathogens. In addition, wheat coleoptile tests showed that lesion symptoms caused by F. graminearum were significantly reduced in wheat seedlings treated with hyphal fragment suspensions of strain J4-3 compared to the controls. Under field conditions, applying spore suspensions and culture filtrates of strain J4-3 with conidial suspensions of F. graminearum on wheat spikes resulted in the significant biocontrol efficacy of FHB. In addition, wheat seedlings previously treated with spore suspensions of strain J4-3 before sowing successfully resulted in FHB reduction after the application of conidial suspensions of F. graminearum at anthesis. More importantly, wheat seedlings treated with hyphal fragments and spore suspensions of strain J4-3 showed significant increases in wheat growth compared to the controls under greenhouse and field conditions. Overall, these findings suggest that E. layuense J4-3 could be a promising biocontrol agent (BCA) against F. graminearum, causing FHB and a growth-promoting fungus in wheat.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3