Improving and Streamlining Gene Editing in Yarrowia lipolytica via Integration of Engineered Cas9 Protein

Author:

Zhang Baixi12ORCID,Cao Jiacan1

Affiliation:

1. School of Food Science and Technology, Jiangnan University, Wuxi 214122, China

2. National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China

Abstract

The oleaginous yeast Yarrowia lipolytica is a prominent subject of biorefinery research due to its exceptional performance in oil production, exogenous protein secretion, and utilization of various inexpensive carbon sources. Many CRISPR/Cas9 genome-editing systems have been developed for Y. lipolytica to meet the high demand for metabolic engineering studies. However, these systems often necessitate an additional outgrowth step to achieve high gene editing efficiency. In this study, we introduced the eSpCas9 protein, derived from the Streptococcus pyogenes Cas9(SpCas9) protein, into the Y. lipolytica genome to enhance gene editing efficiency and fidelity, and subsequently explored the optimal expression level of eSpCas9 gene by utilizing different promoters and selecting various growth periods for yeast transformation. The results demonstrated that the integrated eSpCas9 gene editing system significantly enhanced gene editing efficiency, increasing from 16.61% to 86.09% on TRP1 and from 33.61% to 95.19% on LIP2, all without the need for a time-consuming outgrowth step. Furthermore, growth curves and dilution assays indicated that the consistent expression of eSpCas9 protein slightly suppressed the growth of Y. lipolytica, revealing that strong inducible promoters may be a potential avenue for future research. This work simplifies the gene editing process in Y. lipolytica, thus advancing its potential as a natural product synthesis chassis and providing valuable insights for other comparable microorganisms.

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3