Associations between Genomic Variants and Antifungal Susceptibilities in the Archived Global Candida auris Population

Author:

Wang Yue1,Xu Jianping1ORCID

Affiliation:

1. Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada

Abstract

Candida auris is a recently emerged human fungal pathogen that has posed a significant threat to public health. Since its first identification in 2009, this fungus has caused nosocomial infections in over 47 countries across all inhabited continents. As of May 2023, the whole-genome sequences of over 4000 strains have been reported and a diversity of mutations, including in genes known to be associated with drug resistance in other human fungal pathogens, have been described. Among them, 387 strains contained antifungal-susceptibility information for which different methods might be used depending on the drugs and/or investigators. In most reports on C. auris so far, the number of strains analyzed was very small, from one to a few dozen, and the statistical significance of the relationships between these genetic variants and their antifungal susceptibilities could not be assessed. In this study, we conducted genome-wide association studies on individual clades based on previously published C. auris isolates to investigate the statistical association between genomic variants and susceptibility differences to nine antifungal drugs belonging to four major drug categories: 5-fluorocytosine, amphotericin B, fluconazole, voriconazole, itraconazole, posaconazole, anidulafungin, caspofungin, and micafungin. Due to the small sample sizes for Clades II, V, and VI, this study only assessed Clades I, III, and IV. Our analyses revealed 15 single nucleotide polymorphisms (SNPs) in Clade I (10 in coding and 5 in noncoding regions), 24 SNPs in Clade III (11 in coding and 13 in noncoding regions), and 13 SNPs in clade IV (10 in coding and 3 in noncoding regions) as statistically significantly associated with susceptibility differences to one or more of the nine antifungal drugs. While four SNPs in genes encoding lanosterol 14-α-demethylase (ERG11) and the catalytic subunit of 1,3-beta-D-glucan synthase (FKS1) were shared between clades, including the experimentally confirmed Ser639Phe/Pro missense substitutions in FKS1 for echinocandin resistance, most of the identified SNPs were clade specific, consistent with their recent independent origins. Interestingly, the majority of the antifungal resistance-associated SNPs were novel, and in genes and intergenic regions that have never been reported before as associated with antifungal resistance. While targeted study is needed to confirm the role of each novel SNP, the diverse mechanisms of drug resistance in C. auris revealed here indicate both challenges for infection control and opportunities for the development of novel antifungal drugs against this and other human fungal pathogens.

Funder

atural Sciences and Engineering Research Council of Canada

McMaster University’s Global Science Initiative

Science Research Chair awards

MacData Fellowship

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Reference52 articles.

1. WHO (2023, April 11). Fungal Priority Pathogens List to Guide Research, Development and Public Health Action. Available online: https://www.who.int/publications/i/item/9789240060241.

2. Candida auris sp. nov., a Novel Ascomycetous Yeast Isolated from the External Ear Canal of an Inpatient in a Japanese Hospital;Satoh;Microbiol. Immunol.,2009

3. First Three Reported Cases of Nosocomial Fungemia Caused by Candida auris;Lee;J. Clin. Microbiol.,2011

4. On the Emergence of Candida auris: Climate Change, Azoles, Swamps, and Birds;Casadevall;mBio,2019

5. Environmental Isolation of Candida auris from the Coastal Wetlands of Andaman Islands, India;Arora;mBio,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3