Affiliation:
1. State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Institute of Vegetable Sciences, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
Abstract
A complete telomere-to-telomere (T2T) genome has been a longstanding goal in the field of genomic research. By integrating high-coverage and precise long-read sequencing data using multiple assembly strategies, we present here the first T2T gap-free genome assembly of Ganoderma leucocontextum strain GL72, a Tibetan medicinal mushroom. The T2T genome, with a size of 46.69 Mb, consists 13 complete nuclear chromosomes and typical telomeric repeats (CCCTAA)n were detected at both ends of 13 chromosomes. The high mapping rate, uniform genome coverage, a complete BUSCOs of 99.7%, and base accuracy exceeding 99.999% indicate that this assembly represents the highest level of completeness and quality. Regions characterized by distinct structural attributes, including highest Hi-C interaction intensity, high repeat content, decreased gene density, low GC content, and minimal or no transcription levels across all chromosomes may represent potential centromeres. Sequence analysis revealed the first Copia centromeric retrotransposon in macro-fungi genome. Phylogenomic analysis identified that G. leucocontextum and G. tsugae diverged from the other Ganoderma species approximately 9.8–17.9 MYA. The prediction of secondary metabolic clusters confirmed the capability of this fungus to produce a substantial quantity of metabolites. This T2T gap-free genome will contribute to the genomic ‘dark matter’ elucidation and server as a great reference for genetics, genomics, and evolutionary studies of G. leucocontextum.
Funder
National Key Research and Development Program of China project
Key Research and Development Program of Hebei Province
CAS Engineering Laboratory for Advanced Microbial Technology of Agriculture
Subject
Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献