Induction of Extracellular Hydroxyl Radicals Production in the White-Rot Fungus Pleurotus eryngii for Dyes Degradation: An Advanced Bio-oxidation Process

Author:

García-Martín Ana Belén1,Rodríguez Juana1,Molina-Guijarro José Manuel1ORCID,Fajardo Carmen1ORCID,Domínguez Gabriela1,Hernández Manuel1,Guillén Francisco1

Affiliation:

1. Department of Biomedicine and Biotechnology, Universidad de Alcalá, 28805 Alcalá de Henares, Spain

Abstract

Among pollution remediation technologies, advanced oxidation processes (AOPs) are genuinely efficient since they are based on the production of strong, non-selective oxidants, mainly hydroxyl radicals (·OH), by a set of physicochemical methods. The biological counterparts of AOPs, which may be referred to as advanced bio-oxidation processes (ABOPs), have begun to be investigated since the mechanisms of induction of ·OH production in fungi are known. To contribute to the development of ABOPs, advanced oxidation of a wide number of dyes by the white-rot fungus Pleurotus eryngii, via a quinone redox cycling (QRC) process based on Fenton’s reagent formation, has been described for the first time. The fungus was incubated with 2,6-dimethoxy-1,4-benzoquinone (DBQ) and Fe3+-oxalate, with and without Mn2+, leading to different ·OH production rates, around twice higher with Mn2+. Thanks to this process, the degradative capacity of the fungus increased, not only oxidising dyes it was not otherwise able to, but also increasing the decolorization rate of 20 dyes by more than 7 times in Mn2+ incubations. In terms of process efficacy, it is noteworthy that with Mn2+ the degradation of the dyes reached values of 90–100% in 2–4 h, which are like those described in some AOPs based on the Fenton reaction.

Funder

Ministry of Science and Innovation of Spain

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3