Abstract
The growing importance and demand of lithium (Li) for industrial applications, in particular rechargeable Li-ion batteries, have led to a significant increase in exploration efforts for Li-bearing minerals. To ensure and expand a stable Li supply to the global economy, extensive research and exploration are necessary. Artificial neural networks (ANNs) provide powerful tools for exploration target identification. They can be cost-effectively applied in various geological settings. This article presents an integrated approach of Li exploration targeting using ANNs for data interpretation. Based on medium resolution geological maps (1:50,000) and stream sediment geochemical data (1 sample per 0.25 km2), the Li potential was calculated for an area of approximately 1200 km2 in the surroundings of Bajoca Mine (Northeast Portugal). Extensive knowledge about geological processes leading to Li mineralisation (such as weathering conditions and diverse Li minerals) proved to be a determining factor in the exploration model. Furthermore, Sentinel-2 satellite imagery was used in a separate ANN model to identify potential Li mine sites exposed on the ground surface by analysing the spectral signature of surface reflectance in well-known Li locations. Finally, the results were combined to design a final map of predicted Li mineralisation occurrences in the study area. The proposed approach reveals how remote sensing data in combination with geological and geochemical data can be used for delineating and ranking exploration targets of almost any deposit type.
Funder
ANR – Agence Nationale de la Recherche
Fundação para a Ciência e a Tecnologia
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献