16S rRNA Gene-Based Profiling of the Microbial Community in an Acid Mine Drainage Fe Precipitate at Libiola Mine (Liguria, Italy)

Author:

Consani SirioORCID,Ghignone StefanoORCID,Pozzolini MarinaORCID,Giovine MarcoORCID,Vezzulli Luigi,Carbone Cristina

Abstract

Acid mine drainage (AMD) is a common environmental problem in many sulphide mines worldwide, and it is widely accepted that the microbial community plays a major role in keeping the process of acid generation active. The aim of this work is to describe, for the first time, the microbial community thriving in goethite and jarosite Fe precipitates from the AMD of the Libiola mine. The observed association is dominated by Proteobacteria (>50%), followed by Bacteroidetes (22.75%), Actinobacteria (7.13%), Acidobacteria (5.79%), Firmicutes (2.56%), and Nitrospirae (1.88%). Primary producers seem to be limited to macroalgae, with chemiolithotrophic strains being almost absent. A phylogenetic analysis of bacterial sequences highlighted the presence of heterotrophic bacteria, including genera actively involved in the AMD Fe cycle and genera (such as Cytophaga and Flavobacterium) that are able to reduce cellulose. The Fe precipitates constitute a microaerobic and complex environment in which many ecological niches are present, as proved by the wide range of bacterial species observed. This study is the first attempt to quantitatively characterize the microbial community of the studied area and constitutes a starting point to learn more about the microorganisms thriving in the AMD of the Libiola mine, as well as their potential applications.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference49 articles.

1. The geochemistry of acid mine drainage;Blowes,2014

2. Geochemistry of Acid Mine Waters;Nordstrom,1999

3. The waste-rock environment;Ritchie,1994

4. Acidic Mine Drainage: The Rate-Determining Step

5. Aquatic Chemistry;Stumm,1996

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3