Retaining Geochemical Signatures during Aragonite-Calcite Transformation at Hydrothermal Conditions

Author:

Nguyen Anh,Gabitov RinatORCID,Jimenez Angel,Dygert AndrewORCID,Varco Jac,Pérez-Huerta AlbertoORCID,Migdisov Artas,Paul VarunORCID,Kirkland Brenda,Dash Padmanava

Abstract

Transformation of aragonite, a mineral phase metastable at Earth’s surface, to calcite widely occurs in both sedimentary and metamorphic systems with the presence of an aqueous phase. The transformation process can affect geochemical signatures of aragonite (a protolith). This study focused on quantification of the retention of Mg/Ca and Sr/Ca ratios, and δ18O during the transformation process as well as evaluation of the transformation rate. To investigate the effect of transformation from aragonite to calcite on elemental and stable isotope ratios, we conducted a series of experiments in NaCl solutions at temperatures between 120 and 184 °C. Two additional experiments at 250 °C were conducted to estimate the transformation rate of aragonite to calcite. Protolith materials consist of (1) synthetic (Mg; Sr-bearing or non-Mg; Sr bearing) needle-shaped microcrystals of aragonite (<5 µm in size) and (2) larger chips (>100 µm in size) of natural aragonite. X-ray diffraction (XRD) showed that microcrystals successfully transformed to calcite within 30 h and scanning electron microscopy (SEM) yielded a change in the crystal size to >10 µm in rhombohedral shape. Electron backscatter diffraction (EBSD) of the larger aragonite chips showed that transformation to randomly oriented calcite occurred at the rims and along the cracks while the core retained an aragonite crystal structure. Isotope-ratio mass spectrometry (IRMS) analyses showed that calcite δ18O was controlled by temperature and δ18O of the solution. The obtained calibration curve of isotope fractionation factor versus temperature is consistent with other studies. Inductively coupled plasma optical emission spectroscopy (ICP-OES) analyses showed that calcite partially or completely retained Mg/Ca and Sr/Ca ratios through the transformation.

Funder

Los Alamos National Laboratory

U.S. Department of Energy

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3