Effect of Nano-Additives on the Strength and Durability Characteristics of Marl

Author:

Mirzababaei MehdiORCID,Karimiazar JafarORCID,Sharifi Teshnizi EbrahimORCID,Arjmandzadeh RezaORCID,Bahmani Sayed Hessam

Abstract

Low bearing capacity soils may pose serious construction concerns such as reduced bearing capacity and excessive hydro-associated volume changes. Proper soil remediation techniques must be planned and implemented before commencing any construction on low bearing capacity soils. Environmentally friendly soil stabilizers are gradually replacing traditional soil stabilizers with high carbon dioxide emissions such as lime and cement. This study investigated the use of an alternative pozzolanic mix of nano-additives (i.e., nano-silica and nano-alumina) and cement to reduce the usage of cement for achieving competent soil stabilization outcomes. A series of unconfined compressive strength (UCS), direct shear, and durability tests were conducted on marl specimens cured for 1, 7, and 28 days stabilized with nano-additives (0.1~1.5%), 3% cement, and combined 3% cement and nano-additives. The UCS and shear strength of stabilized marl increased with nano-additives up to a threshold nano-additive content of 1% which was further intensified with curing time. Nano-additive treated cemented marl specimens showed long durability under the water, while the cemented marl decomposed early. The microfabric inspection of stabilized marl specimens showed significant growth of calcium silicate hydrate (CSH) products within the micro fabric of nano-silica treated marl with reduced pore-spaces within aggregated particles. The results confirmed that nano-additives can replace cement partially to achieve multi-fold improvement in the strength characteristics of the marl.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3