Seismic Random Noise Attenuation Using a Tied-Weights Autoencoder Neural Network

Author:

Zhou Huailai,Guo Yangqin,Guo Ke

Abstract

Random noise is unavoidable in seismic data acquisition due to anthropogenic impacts or environmental influences. Therefore, random noise suppression is a fundamental procedure in seismic signal processing. Herein, a deep denoising convolutional autoencoder network based on self-supervised learning was developed herein to attenuate seismic random noise. Unlike conventional methods, our approach did not use synthetic clean data or denoising results as a training label to build the training and test sets. We directly used patches of raw noise data to establish the training set. Subsequently, we designed a robust deep convolutional neural network (CNN), which only depended on the input noise dataset to learn hidden features. The mean square error was then evaluated to establish the cost function. Additionally, tied weights were used to reduce the risk of over-fitting and improve the training speed to tune the network parameters. Finally, we denoised the target work area signals using the trained CNN network. The final denoising result was obtained after patch recombination and inverse operation. Results based on synthetic and real data indicated that the proposed method performs better than other novel denoising methods without loss of signal quality loss.

Funder

Key R&D projects of the Sichuan Science and Technology Department of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3