A Case Study of Rock Type Prediction Using Random Forests: Erdenet Copper Mine, Mongolia

Author:

Sarantsatsral Narmandakh,Ganguli RajiveORCID,Pothina Rambabu,Tumen-Ayush Batmunkh

Abstract

In a mine, knowledge of rock types is often desired as they are important indicators of grade, mineral processing complications, or geotechnical attributes. It is common to model the rock types with visual graphics tools using geologist-generated rock type information in exploration drillhole databases. Instead of this manual approach, this paper used random forest (RF), a machine learning (ML) algorithm, to model the rock type at Erdenet Copper Mine, Mongolia. Exploration drillhole data was used to develop the RF models and predict the rock type based on the coordinates of locations. Data selection and model evaluation methods were designed to ensure applicability for real life scenarios. In the scenario where rock type is predicted close to locations where information is available (such as in blocks being blasted), RF did very well with an overall success rate (OSR) of 89%. In the scenario where rock type was predicted for two future benches (i.e., 30 m below known locations), the best OSR was 86%. When an exploration program was simulated, performance was poor with a OSR of 59%. The results indicate that EMC can leverage RF models for short-term and long-term planning by predicting rock types within drilling blocks or future blocks quite accurately.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference33 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3