Abstract
The magnetic gradient tensor provides a powerful tool for detecting magnetic bodies because of its ability to emphasize detailed features of the magnetic anomalies. To interpret field measurements obtained by magnetic gradiometry, the forward calculation of magnetic gradient fields is always necessary. In this paper, we present a contraction integral equation method to simulate the gradient fields produced by 3-D magnetic bodies of arbitrary shapes and high susceptibilities. The method employs rectangular prisms to approximate the source region with the assumption that the magnetization in each element is homogeneous. The gradient fields are first solved in the Fourier domain and then transformed into the spatial domain by 2-D Gauss-FFT. This calculation is performed iteratively until the required accuracy is reached. The convergence of the iterative procedure is ensured by a contraction operator. To facilitate application, we introduce a FORTRAN program to implement the algorithm. This program is intended for users who show interests in 3D magnetic modeling at high susceptibility. The performance of the program, including its computational accuracy, efficiency and convergence behavior, is tested by several models. Numerical results show that the code is computationally accurate and efficient, and performs well at a wide range of magnetic susceptibilities from 0 SI to 1000 SI. This work, therefore, provides a significant tool for 3D forward modeling of magnetic gradient fields at high susceptibility.
Funder
the Natural Science Foundation of Guangxi Province
Subject
Geology,Geotechnical Engineering and Engineering Geology