A Communication-Efficient Distributed Matrix Multiplication Scheme with Privacy, Security, and Resiliency

Author:

Wang Tao1ORCID,Shi Zhiping1,Yang Juan23,Liu Sha1

Affiliation:

1. National Key Laboratory of Wireless Communications, University of Electronic Science and Technology of China, Chengdu 611731, China

2. School of Electronic Information and Automation, Guilin University of Aerospace Technology, Guilin 541004, China

3. Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin 541004, China

Abstract

Secure distributed matrix multiplication (SDMM) schemes are crucial for distributed learning algorithms where extensive data computation is distributed across multiple servers. Inspired by the application of repairing Reed–Solomon (RS) codes in distributed storage and secret sharing, we propose SDMM schemes with reduced communication overhead through the use of trace polynomials. Specifically, these schemes are designed to address three critical concerns: (i) ensuring information-theoretic privacy against collusion among servers; (ii) providing security against Byzantine servers; and (iii) offering resiliency against stragglers to mitigate computing delays. To the best of our knowledge, security and resiliency are being considered for the first time within trace polynomial-based approaches. Furthermore, our schemes offer the advantage of reduced sub-packetization and a lower server-count requirement, which diminish the computational complexity and download cost for the user.

Funder

National Natural Science Foundation of China

National Key Laboratory of Wireless Communications Foundation

National Key Research and Development Program

Guangxi Key Laboratory of Automatic Detecting Technology and Instruments

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3