Micromechanical Modeling of Fatigue Crack Nucleation around Non-Metallic Inclusions in Martensitic High-Strength Steels

Author:

Schäfer BenjaminORCID,Sonnweber-Ribic Petra,ul Hassan Hamad,Hartmaier AlexanderORCID

Abstract

Martensitic high-strength steels are prone to exhibit premature fatigue failure due to fatigue crack nucleation at non-metallic inclusions and other microstructural defects. This study investigates the fatigue crack nucleation behavior of the martensitic steel SAE 4150 at different microstructural defects by means of micromechanical simulations. Inclusion statistics based on experimental data serve as a reference for the identification of failure-relevant inclusions and defects for the material of interest. A comprehensive numerical design of experiment was performed to systematically assess the influencing parameters of the microstructural defects with respect to their fatigue crack nucleation potential. In particular, the effects of defect type, inclusion–matrix interface configuration, defect size, defect shape and defect alignment to loading axis on fatigue damage behavior were studied and discussed in detail. To account for the evolution of residual stresses around inclusions due to previous heat treatments of the material, an elasto-plastic extension of the micromechanical model is proposed. The non-local Fatemi–Socie parameter was used in this study to quantify the fatigue crack nucleation potential. The numerical results of the study exhibit a loading level-dependent damage potential of the different inclusion–matrix configurations and a fundamental influence of the alignment of specific defect types to the loading axis. These results illustrate that the micromechanical model can quantitatively evaluate the different defects, which can make a valuable contribution to the comparison of different material grades in the future.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3