Effective Prediction of Concrete Constitutive Models for Reinforced Concrete Shear Walls under Cyclic Loading

Author:

To Quoc Bao1,Shin Jiuk2ORCID,Kim Sung Jig3ORCID,Kim Hye-Won4,Lee Kihak1

Affiliation:

1. Deep Learning Architecture Research Center, Department of Architectural Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea

2. Department of Architectural Engineering, Gyeongsang National University, Jinju 52828, Republic of Korea

3. Department of Architectural Engineering, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea

4. Senior Research Officer, Earthquake Hazards Reduction Center, National Disaster Management Research Institute, Ulsan 44412, Republic of Korea

Abstract

One of the most challenging elements of modeling the behaviour of reinforced concrete (RC) walls is combining realistic material models that can capture the observable behaviour of the physical system. Experiments with realistic loading rates and pressures reveal that steel and concrete display complicated nonlinear behaviour that is challenging to represent in a single constitutive model. To investigate the response of a reinforced concrete structure subjected to dynamic loads, this paper’s study is based on many different material models to assess the advantages and disadvantages of the models on 2D and 3D RC walls using the LS-DYNA program. The models consisted of the KCC model and the CDP model, which represented plasticity and distinct tensile/compressive damage models, and the Winfrith model, which represented plasticity and the smeared crack model. Subsequently, the models’ performances were assessed by comparing them to experimental data from reinforced concrete structures, in order to validate the accuracy of the overall behaviour prediction. The Winfrith model demonstrated satisfactory results in predicting the behaviour of 2D and 3D walls, including maximum strength, stiffness deterioration, and energy dissipation. The method accurately predicted the maximum strength of the Winfrith concrete model for the 2D wall with an error of 9.24% and for the 3D wall with errors of 3.28% in the X direction and 5.02% in the Y direction. The Winfrith model demonstrated higher precision in predicting dissipation energy for the 3D wall in both the X and Y directions, with errors of 6.84% and 6.62%, correspondingly. Additional parametric analyses were carried out to investigate structural behaviour, taking into account variables such as concrete strength, strain rate, mesh size, and the influence of the element type.

Funder

Ministry of Interior and Safety

Ministry of Education

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3