Improving Laser Powder Bed Fusion Printability of Tungsten Powders Using Simulation-Driven Process Optimization Algorithms

Author:

Leclercq Aurore1,Brailovski Vladimir1ORCID

Affiliation:

1. Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, QC H3C 1K3, Canada

Abstract

This study applies numerical and experimental techniques to investigate the effect of process parameters on the density, structure and mechanical properties of pure tungsten specimens fabricated by laser powder bed fusion. A numerical model based on the simplified analysis of a thermal field generated in the powder bed by a moving laser source was used to calculate the melt pool dimensions, predict the density of printed parts and build a cost-effective plan of experiments. Specimens printed using a laser power of 188 W, a scanning speed of 188 mm/s, a hatching space of 80 µm and a layer thickness of 30 µm showed a maximum printed density of 93.2%, an ultimate compression strength of 867 MPa and a maximum strain to failure of ~7.0%, which are in keeping with the standard requirements for tungsten parts obtained using conventional powder metallurgy techniques. Using the optimized printing parameters, selected geometric artifacts were manufactured to characterize the printability limits. A complementary numerical study suggested that decreasing the layer thickness, increasing the laser power, applying hot isostatic pressing and alloying with rhenium are the most promising directions to further improve the physical and mechanical properties of printed tungsten parts.

Funder

Natural Sciences and Engineering Research Council

Pôle de recherche et d’innovation en matériaux avancés, Québec

Publisher

MDPI AG

Reference69 articles.

1. Davis, J.R. (1998). Metals Handbook, ASM International. [2nd ed.]. Desk Edition.

2. Bilewska, K. (2016). Report on Refractory Metal Reduction Potential, Łukasiewicz Research Network—Institute of Non-Ferrous Metals.

3. Bourell, D.L., Frazier, W., Kuhn, H., and Seifi, M. (2020). Additive Manufacturing Processes, ASM International.

4. A Review on Additive Manufacturing of Refractory Tungsten and Tungsten Alloys;Talignani;Addit. Manuf.,2022

5. A Comparison Framework to Support the Selection of the Best Additive Manufacturing Process for Specific Aerospace Applications;Colomo;Int. J. Rapid Manuf.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3