Simulation and Study of Influencing Factors on the Solidification Microstructure of Hazelett Continuous Casting Slabs Using CAFE Model

Author:

Pan Qiuhong1,Jin Wei1,Huang Shouzhi2,Guo Yufeng1,Jiang Mingyuan1,Li Xuan1

Affiliation:

1. School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China

2. Inner Mongolia Liansheng New Energy Materials Co., Ltd., Tongliao 029200, China

Abstract

The Hazelett continuous casting and rolling process represents a leading-edge production method for cold-rolled aluminum sheet and strip billets in the world. Its solidification microstructure significantly influences the quality of billets produced for cold rolling of aluminum sheets and strips. In this study, employing the CAFE (Cellular Automaton—Finite Element) method, we developed a coupled computational model to simulate the solidification microstructure in the Hazelett continuous casting process. We investigated the impact of nucleation parameters, casting temperature, and continuous casting speed on the microstructural evolution of the continuous casting billet. Through integrated metallographic analyses, we aimed to elucidate the controlling mechanisms underlying the Hazelett continuous casting process and its resultant microstructure. The results demonstrate that the equiaxed rate of grains increases with an increase in nucleation density, and the grain size decreases under constant cooling strength. With other nucleation parameters held constant, the grain size decreases as undercooling increases, and the columnar crystal zone expands. The nucleation density of the Hazelett continuous casting aluminum alloy has been determined to range between 1011 m−3 and 1013 m−3, and the undercooling ranges between 1 °C and 2.5 °C. The solidified grain structure can be controlled between 35 μm and 72 μm. The grain size of the continuous casting billet increases with an increase in pouring temperature and decreases as the casting speed increases. Elevating the pouring temperature positively impacts the fraction of high-angle grain boundaries and promotes the dendritic to equiaxed grain transition. Moreover, there exists potential for further optimization of continuous casting process parameters.

Funder

Inner Mongolia Liansheng New Energy Materials Co., Ltd.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3