Fatigue Crack Growth Rates and Crack Tip Opening Loads in CT Specimens Made of SDSS and Manufactured Using WAAM

Author:

Sales Andrew12ORCID,Khanna Aditya3ORCID,Hughes James1,Yin Ling1,Kotousov Andrei1ORCID

Affiliation:

1. School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia

2. AML3D Limited, 35 Woomera Avenue, Edinburgh, SA 5111, Australia

3. School of Mechanical & Mining Engineering, The University of Queensland, Brisbane, QLD 4072, Australia

Abstract

Additive manufacturing offers greater flexibility in the design and fabrication of structural components with complex shapes. However, the use of additively manufactured parts for load-bearing structural applications, specifically involving cyclic loading, requires a thorough investigation of material fatigue properties. These properties can be affected by many factors, including residual stresses and crack tip shielding mechanisms, which can be very different from those of conventionally manufactured materials. This research focuses on super duplex stainless steels (SDSSs) fabricated with wire arc additive manufacturing (WAAM) and investigates their fatigue crack growth rates and the net effect of crack tip shielding mechanisms. Using the compliance-based method, we measured crack tip opening loads in compact tension (CT) specimens with cracks propagating longitudinally and transversely to the WAAM deposition direction. It was found that fatigue crack growth rates were very similar in both directions when correlated by the effective stress intensity factor range. However, the differences in crack tip opening loads explain a quite significant influence of the deposition direction on the fatigue life.

Funder

Australian Research Council’s Discovery Projects funding scheme

Defence Innovation Partnership’s Collaborative Research Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3