A High-Performance Supercapacitor Based on Hierarchical Template-Free Ni/SnO2 Nanostructures via Hydrothermal Method

Author:

Shameem Abdul Samad12ORCID,Murugan Anbazhagan3,Siva Vadivel24ORCID,Palanisamy Govindasamy5ORCID,Kim Ikhyun6ORCID,Lee Jintae5ORCID,Paramasivam Sivaprakash6ORCID

Affiliation:

1. Department of Science and Humanities, Karpagam Academy of Higher Education, Coimbatore 641 021, India

2. Centre for Energy and Environment, Karpagam Academy of Higher Education, Coimbatore 641 021, India

3. Department of Science and Humanities, Karpagam College of Engineering, Coimbatore 641 032, India

4. Department of Physics, Karpagam Academy of Higher Education, Coimbatore 641 021, India

5. School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea

6. Department of Mechanical Engineering, Keimyung University, Daegu 42601, Republic of Korea

Abstract

Novel flake-like Ni1−xSnxO2 particles were successfully prepared by template-free hydrothermal synthesis. The prepared samples were investigated for their properties by different characterization techniques. Scanning micrographs showed that the obtained particles consisted of nanoflakes. The X-ray diffraction results of the Ni1−xSnxO2 revealed the formation of mixed-phase Ni/SnO2 having the typical tetragonal structure of SnO2, and the cubic structure of Ni in a nanocrystalline nature. The doping with Ni had a certain influence on the host’s lattice structure of SnO2 at different doping concentrations. Confirmation of the functional groups and the elements in the nanomaterials was accomplished using FTIR and EDS analyses. The electrochemical performance analysis of the prepared nanomaterials were carried out with the help of the CV, GCD, and EIS techniques. The specific capacitance of the synthesized nanomaterials with different concentrations of Ni dopant in SnO2 was analyzed at different scanning rates. Interestingly, a 5% Ni-doped SnO2 nanocomposite exhibited a maximum specific capacitance of 841.85 F g−1 at 5 mV s−1 in a 6 M KOH electrolyte. Further, to boost the electrochemical performance, a redox additive electrolyte was utilized, which exhibited a maximum specific capacitance of 2130.33 at 5 mV s−1 and an excellent capacitance retention of 93.22% after 10,000 GCD cycles. These excellent electrochemical characteristics suggest that the Ni/SnO2 nanocomposite could be utilized as an electrode material for high-performance supercapacitors.

Funder

National Research Foundation of Korea

Korean government

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3