Affiliation:
1. College of Engineering and Applied Science, University of Wisconsin-Milwaukee, 3200 N Cramer St., Milwaukee, WI 53211, USA
Abstract
Joining structural components with mechanical fasteners is common in many engineering applications across all industries. This study investigates combining additive manufactured inserts with sandwich composites consisting of aluminum honeycomb cores with carbon fiber reinforced facesheets. The combination of these components offers an integrated, lightweight solution when mechanically fastening sandwich composite components using bolted joints. The experimental and numerical investigation explores the influence insert geometry has on the structural response of a sandwich composite under pull-through load scenarios. Various failure modes are observed during experimental analysis with facesheet debonding being the initial failure mode. In addition, finite element models investigate the stress fields in the honeycomb core and overall panel deflections, validating the mechanics observed experimentally. When comparing additively manufactured inserts to standard inserts, additively manufactured inserts have increases in stiffness, maximum force, and total energy absorption of 7.1%, 53.0%, and 62.3%, respectively. These results illustrate the potential of an integrated approach to mechanical joint technology by combining additively manufactured inserts with sandwich composite components using aluminum honeycomb cores.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献